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Within the mode-coupling theory �MCT� for glassy dynamics, the asymptotic low-frequency expansions for
the dynamical susceptibilities at critical points are compared to the expansions for the dynamic moduli; this
shows that the convergence properties of the two expansions can be quite different. In some parameter regions,
the leading-order expansion formula for the modulus describes the solutions of the MCT equations of motion
outside the transient regime successfully; at the same time, the leading- and next-to-leading-order expansion
formulas for the susceptibility fail. In these cases, one can derive a Cole-Cole law for the susceptibilities; and
this law accounts for the dynamics for frequencies below the band of microscopic excitations and above the
high-frequency part of the � peak. It is shown that this scenario explains the optical-Kerr-effect data measured
for salol and benzophenone �BZP�. For BZP it is inferred that the depolarized light-scattering spectra exhibit a
wing for the � peak within the Gigahertz band. This wing results from the crossover of the von Schweidler law
part of the � peak to the high-frequency part of the Cole-Cole peak; and this crossover can be described
quantitatively by the leading-order formulas of MCT for the modulus.
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I. INTRODUCTION

During the past 15 years, several new spectrometers have
been introduced for the study of the glassy dynamics of liq-
uids. The evolution of this complex slow dynamics upon
decreasing the temperature T or increasing the density � has
been documented for many systems for times t, which ex-
ceed the natural time scale tmic for condensed-matter motions
by three or more orders of magnitude. Similar progress has
been made for molecular-dynamics simulations of liquid
models. In parallel to these experimental activities, a theory
for the evolution of glassy dynamics has been developed
which is referred to as mode-coupling theory �MCT�. This
theory is based on regular equations of motion for a set of
autocorrelation functions. The MCT equations lead to fold
bifurcations for the correlators’ long-time limits if some con-
trol parameter like T reaches a critical value Tc; this bifurca-
tion describes a transition from a liquid to an amorphous
solid. The distance of the control parameter from the critical
value, say �= �Tc−T� /Tc, can be used for the discussion of
the bifurcation dynamics as a small parameter. For � tending
to zero and times increasing to infinity, it is possible to cal-
culate asymptotic solutions of the MCT equations. The
leading-order results provide a set of general formulas,
which explain the qualitative features of the bifurcation sce-
nario. Many fits of data with these general formulas have
been studied in order to test the relevance of the MCT for the
explanation of the experimental facts �1�.

A set of general MCT results, which is of main interest in
this paper, concerns the critical dynamics. This dynamic is
described by autocorrelation functions ��t� for control pa-
rameters at the bifurcation point, say T=Tc. Equivalently,
one can consider the corresponding loss spectra �����. These
are the products of the frequency � and the Fourier-cosine
transform of ��t�. The central asymptotic formula is speci-
fied by �1� a positive number fc, which is called the plateau,
�2� a positive amplitude, say A, and �3� the critical exponent
a, obeying 0�a�0.396, limt→� ta���t�− fc�=A. This for-

mula is equivalent to lim�→0 ����� /�a=sin�	a /2�
�1−a�A,
with 
 denoting the gamma function. For a given transition
point, all correlators are specified by the same exponent a,
but different critical points can differ in their value for a. The
leading-order long-time result for the correlator describes a
power-law decay, ��t�− fc�1/ ta. Equivalently, the leading-
order result for the low-frequency critical loss spectrum is
given by a power-law variation �������a. For states near
the transition point, ��t� and ����� can be replaced by their
respective critical functions for short times, t� t�, or large
frequencies, �t��1. The time scale t� is the same for all
correlators and diverges for states approaching the transition
point. For t t� and �t��1, the correlators and spectra de-
pend sensitively on �; for shorter times, t� t� and �t��1,
the correlators and spectra depend on � smoothly. An �a

spectrum was identified first for the glass-forming molten
salt 0.4Ca�NO3�20.6K�NO3� �CKN� in data obtained by
neutron-scattering spectroscopy �2�. This system was also
used to document for the first time the evolution of glassy
dynamics within the full Giga-Hertz band �3�: Using depo-
larized light-scattering spectroscopy, a spectrum compatible
with the �a law was found extending from 1 GHz to
400 GHz. The t−a decay in the time domain was measured
first for density correlators by photon-correlation spectros-
copy for a colloidal suspension of hard spheres �4� with the
density as a control parameter.

Other glass-forming systems that can be studied experi-
mentally are found in many van der Waals liquids. The natu-
ral time scale for intermolecular vibrations is a picosecond.
For normal liquid behavior, one expects correlations to decay
to zero for times around some picoseconds. The normal-
liquid excitation spectra extend from, say, 0.5 THz to, say,
5 THz. Glassy-dynamics spectra for several systems have
been measured by depolarized light-scattering spectroscopy,
and the data were shown to be consistent with the MCT
bifurcation scenario. For example, spectra for toluene have
been fitted successfully with leading-order asymptotic results
for frequencies between 0.5 GHz and 1 THz and for tem-
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peratures decreasing from T=Tc+140 K to Tc+10 K; Tc
�150 K �5�. For all these systems, the weight of the glassy
dynamics part of the spectra is large compared to the part of
normal-liquid dynamics, i.e., the so-called � peak is large. In
agreement with the MCT prediction for such situations, the
amplitude A for the �a spectrum is small, and the low-
frequency contributions of the normal-liquid dynamics affect
the region of the expected �a behavior of the spectra. As a
result, no frequency interval has ever been identified for a
van der Waals liquid, where an �a spectrum can be identified
explicitly.

Torre et al. �6� have introduced optical-Kerr-effect �OKE�
spectroscopy as a technique for the study of glassy dynam-
ics. The measurement provides the response function
��t��−�t��t� for the same probing variable, which is studied
in depolarized light-scattering experiments. The Fourier-sine
transforms of ��t� are proportional to the loss spectra �����
mentioned in the preceding paragraph. The evolution of the
glassy dynamics of m-toluidine was measured for tempera-
tures decreasing from 295 K to 250 K. The response func-
tions could be fitted well by the scaling-law results predicted
by the leading-order asymptotic formulas for the MCT bifur-
cation �7�. The analysis implies a critical temperature Tc near
220 K and a critical exponent a near 0.3. However, lowering
the temperature to 225 K, the critical power-law decay
��t��1/ t1+a was not observed �8�. The negative slope of the
measured log �-versus-log t curve is not 1+a, rather it is a
number smaller than unity, say 1−b�. Decay laws
��t��1/ t1−b� with exponents b� around 0.2 have been iden-
tified by Cang et al. �9� for a number of other van der Waals
liquids. The OKE response of salol was studied by Hinze
et al., and the data were shown to be consistent with the
known MCT scaling law formulas for the temperature de-
creasing from 340 K to 266 K �10�. The glassy response for
T=257 K was measured with an impressive accuracy for
times increasing up to 0.5 �s; and the dynamics for
t�100 ps displays the behavior expected from the
leading-order asymptotic results of MCT. However, the
glassy dynamics for 2 ps� t�20 ps manifests itself by a
��t��1/ t decay. The corresponding correlator shows a loga-
rithmic time dependence. All OKE response functions mea-
sured so far demonstrate a glassy dynamics that cannot be
described by the general leading-order asymptotic formulas
for the MCT bifurcation in the regime t�30 ps. In a recent
alternative approach �11� is was possible to fit some of the
OKE data for t�30 ps.

It was argued recently that the new facets of glassy dy-
namics discovered by OKE spectroscopy �8–10� can be un-
derstood as generic implications of the Cole-Cole law for the
critical dynamics �12�. In the following, this statement shall
be explained in detail. Section II summarizes the equations
of motion and the known scaling-law results of MCT. It is
explained in Sec. III that an asymptotic expansion of the
modulus can have a much larger range of validity than the
expansion for the susceptibility; the Cole-Cole law—
introduced in 1941 as empirical law �13�—is derived in full
generality from the microscopic equations of motion. The
relevance of these results is demonstrated for a schematic
model in Sec. IV using parameter values that describe the

mentioned OKE data. The interplay between the Cole-Cole
peak and the �-peak is investigated in Sec. V where for
specific parameter values the � peak displays a wing. Section
VI presents a conclusion.

II. ESSENTIAL MCT FORMULAS

A. Equations of motion

Within the basic version of MCT, the dynamics of the
system is described by M correlators �q�t�, q=1, . . . ,M.
These are real and even functions of the time t, which obey
the initial conditions �q�t=0�=1, �t�q�t=0�=0. The corre-
sponding set of normalized response functions is given by

�q�t� = − �t�q�t� . �1a�

Laplace transforms map functions from the time domain, say
F�t�, in the frequency domain. They shall be used with the
convention LT�F�t���z�= i�0

�dt exp�izt�F�t�, z=�+ i0. One
gets LT��q�t���z�= �1+��q����, where �q���=LT��q�t���z�.
The normalized dynamical susceptibilities are given by

�q��� = 1 + ��q��� . �1b�

The loss spectra �q����=Im �q��� are related trivially to the
fluctuation spectra �q����=Im �q���: �q����=��q����.

The Zwanzig-Mori formalism provides a fraction repre-
sentation of �q��� in terms of a fluctuating-force correlator
Mq���: �q���=−1/ ��−�q

2 / ��+Mq�����. The positive fre-
quency �q quantifies the initial decay of the correlator
�q�t�=1− ��qt�2 /2+O�t3�. Within MCT, a white-noise term
�q is split off from the kernel Mq���; the remainder is rep-
resented in terms of a dimensionless function mq�t�:
Mq���= i�q+�q

2mq���; �q0. Here, mq�t� and mq��� are re-
lated by Laplace transformation. The fraction representation
is equivalent to the equations of motion

�t
2�q�t� + �q�t�q�t� + �q

2	�q�t� + 

0

t

dt�mq�t − t���t��q�t���
= 0. �2a�

The essential approximation in MCT is the expression of
mq�t� as a polynomial Fq of the correlators

mq�t� = Fq��1�t�, . . . ,�M�t�� . �2b�

There is no monomial contribution of order zero. The coef-
ficients of the polynomial are called mode-coupling coeffi-
cients. They are the coupling constants of the theory and
must not be negative. Within the microscopic theory, the
polynomials are of second order and the coefficients are
given by the equilibrium structure functions, which in turn
are smooth functions of control parameters like the tempera-
ture T for the states considered.

At the generic transition mentioned in the preceding sec-
tion, the correlator’s long-time limits depend singularly on
the distance parameter �. For ��0, fluctuations disappear
for long times, �q�t→ � �=0. For �0, �q�t→ � �= fq,
0� fq�1, q=1, . . . ,M; the fluctuations arrest. Within the
microscopic version of MCT, the arrested part fq has the
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meaning of the Debye-Waller factor of the solid amorphous
state. The leading-order variation with changes of � for the
arrested part is given by fq− fq

c ���, �→0+, fq
c �0,

q=1, . . . ,M. The regularity of the MCT equations implies
the following. For � tending to arbitrarily small values, there
appears an arbitrarily large time interval, where �q�t� is ar-
bitrarily close to fq

c. This critical arrested part fq
c has the

meaning of a plateau for the �q�t�-versus-log t curves for
states near the transition. The corresponding plateau for the
force correlators is mq�t→ � �= fq

mc=Fq
c�f1

c , . . . , fM
c �. At the

transition, �q��� and mq��� exhibit poles −fq
c /� and −fq

mc /�,
respectively. Hence, there is a region of small � and small
�, where �+ i�q can be neglected compared to �q

2mq���.
This region is the one for the MCT glassy dynamics. The
fraction representation of the correlators simplifies to
�q���=−1/ ��−1/mq����. This formula can also be noted as

�mq��� = ��q���/�1 + ��q���� . �3a�

Equation �1b� yields the equivalent expression for the dy-
namical susceptibility

�q��� = 1/�1 − �mq���� . �3b�

Within the regime of glassy dynamics, �1−�mq���� has the
meaning of a modulus for the response described by �q�t�.
The pair of Eqs. �2b� and �3a� can fix the solution only up to
some overall time scale t0. The latter is determined by
matching of the transient dynamics with the glassy dynam-
ics. For further details and for a list of original papers, the
reader can consult Ref. �14�.

B. Scaling laws

There is a straightforward recipe to calculate from the
coupling coefficients at the transition point and from the
critical arrested parts fq

c a number �, 1 /2���1. It is called
the exponent parameter for the chosen transition point of the
model under discussion. It fixes the critical exponent a, men-
tioned in Sec. I. It fixes a further exponent b, 0�b�1,
which is called the von Schweidler exponent. The
equation for the two exponents reads 
�1−a�2 /
�1−2a�=�
=
�1+b�2 /
�1+2b�. Parameter � also specifies a pair of
equations for a pair of functions g±�t̂�, which are
defined for t̂�0. The equations read ±1+�g±�t̂�2

= �d /dt̂��0
t̂ dt̂g±�t̂− t̂��g±�t̂��, and they must be solved with the

initial condition limt̂→0 t̂ag±�t̂�=1. Up to corrections of order
t̂a, one gets for small t̂,

g±�t̂ � 1� = 1/t̂a. �4a�

The function g+�t̂� approaches its long-time limit exponen-
tially, g+�t̂�1�=1/�1−�. The function g−�t̂� exhibits a
power-law divergence for large t̂. Up to corrections of order
1 / t̂b, one gets

g−�t̂ � 1� = − Bt̂b. �4b�

There are tables allowing the determination of a, b, and B
from a given �. There are also tables to determine g±�t̂� with
an accuracy sufficient for all practical purposes �15�.

The functions g±�t̂� are the shape functions for the
first scaling law of MCT. For � tending to zero, there
appears a time interval of diverging length, within which
�q�t�= �q�t�− fq

c is arbitrary small. The leading-order solu-
tion for the small parameter �q�t� yields the first scaling law.
The solution assumes the form

�q�t� = fq
c + hq

��g±�t/t��, � � 0. �5a�

The amplitudes hq�0, q=1, . . . ,M are calculated from the
mode-coupling coefficients at the critical point. The separa-
tion parameter � is defined similarly: it is a smooth function
of the control parameters and can be linearized close to the
transition point, �=C�+O��2�, with a positive coefficient C
that depends on the chosen control parameter. The first criti-
cal time scale t� is given by the critical exponent a, the
separation parameter �, and the time scale t0, which is de-
fined by the short-time dynamics,

t� = t0/��, � = 1/�2a� . �5b�

The strong control-parameter dependence of the correlators
near the plateau is described solely by that of the correlation
scale �� and of the time scale t�.

From Eqs. �4a�, �5a�, and �5b�, one gets the leading-order
asymptotic law for the decay of the critical correlator dis-
cussed in Sec. I, �q�t�− fq

c =hq�t0 / t�a. From Eqs. �4a�, �5a�,
and �5b� one gets the von Schweidler law for the decay of the
liquid correlators below the plateau,

�q�t� = fq
c − hq�t/t���

b, t� � t � t��, � � 0. �6�

Here, the second critical time scale of MCT reads
t��= t0 / �B1/b ���, with �=1/ �2a�+1/ �2b�. Up to errors of
order �, the decay of the liquid correlators below the pla-
teau is described by the second scaling law of MCT

�q�t� = �̃q�t/t���, t�� � t, � � 0. �7�

Here, �̃q�t̃� is an �-independent shape function. Its initial part

is given by von Schweidler’s law: �̃q�t̃�1�= fq
c −hqt̃b. Cor-

rections of order �� modify the formula �7� for the below-
plateau decay in a regime where �q�t� is close to the plateau.
These corrections are described by Eq. �5a� for t t�. The
below-plateau decay is referred to as � process, and Eq. �7�
formulates the superposition principle. Details of the deriva-
tion of the cited results, references to the original work, and
a comprehensive demonstration for the hard-sphere system
can be found in Refs. �14,16�.

III. CRITICAL DYNAMICS AND COLE-COLE LAW

In this section, correlators and susceptibilities shall be dis-
cussed for states at the transition point, say T=Tc. Focusing
on the range of validity, the essential formulas are analyzed
for the correlators in Sec. III A, and for the susceptibilities in
Sec. III B. The Cole-Cole law is derived in Sec. III C.

A. Power-law solution for correlation functions

The leading-order scaling-law formulas �4a� and �5a�
yield for the critical correlators
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�q�t� = fq
c + hq�t0/t�a. �8�

A first question, whose answer is not implied by the results
cited in Sec. II B, concerns the range of validity of Eq. �8�
for short times. Let us define an onset time tq

* for the power
law by the request, that Eq. �8� describes �q�t�− fq

c within a
relative error of, say, 10%, for t tq

*. For normal-liquid dy-
namics, one would expect the correlators to decay to zero for
times around tmic. A second question to be discussed is: How
can one describe the critical correlators in cases where tq

*

exceeds tmic, i.e., when there is a gap between the end of the
transient regime and the onset of the critical power law?

The asymptotic solution �8� can be extended to an
asymptotic series expansion in powers of t−a. The result up to
the next-to-leading term shall be noted as

�q�t� = fq
c + hq�t0/t�a�1 + K̂q�t0/t�a� . �9a�

Here, remainders which are given by �t0 / t�3a times some
power of ln�t / t0� are dropped. The Tauberian theorem yields
an equivalent formula in the frequency domain,

��q��� = − fq
c − 
�1 − a�hq�− i�t0�a

− 
�1 − 2a�hqK̂q�− i�t0�2a. �9b�

In this formula, terms are dropped, which are proportional to
�3a times some power of ln �. The preceding two formulas
are the starting point for the following derivations. It is a
straightforward procedure to calculate the correction ampli-

tude K̂q from the mode-coupling coefficients at the critical
point T=Tc �14�. From Eq. �9a�, one can estimate an onset

time of tq
* / t0= �10  K̂q  �1/a. This is an estimate based on the

assumption that higher-order expansion terms in Eq. �9a� do
not influence the results seriously for t tq

*. Typically for
many systems, the critical exponent a is around 0.3, and
1/a�3. Hence, tq

* depends sensitively on the correction am-

plitude K̂q. As a result, tq
* can vary considerably for different

q. As a relevant example, let us cite the results for the
density-fluctuation correlators of a system of hard spheres of
diameter d �14�: The time t1

* referring to a wave number
q1d=7.0 exceeds the time t2

* for q2d=10.6 by a factor of
around 100.

B. Power-law solution for the susceptibilities

From Eqs. �1a� and �8�, one obtains the long-time result
for the response functions up to leading-order corrections,

��t�t0 = ahq�t0/t�1+a. �10�

According to Eq. �9a�, the leading order result in Eq. �8� is
valid for t tq

*, but the onset time for Eq. �10� is later,
t tq

*21/a, where typically 21/a�10. Hence, the detection of
the critical dynamics in its leading asymptotic form is more
difficult for the response functions than for the correlators.

From Eq. �9b�, one arrives at the expansion formula for
the absorptive part of the dynamical susceptibility,

�q���� = �
�1 − a�sin�	a/2��hq��t0�a � �1 + kaK̂q��t0�a� ,

�11a�

ka = 2
�1 − a�cos�	a/2�/� . �11b�

The leading-order power-law result reads

�q���� = �
�1 − a�sin�	a/2��hq��t0�a, �11c�

which has an onset frequency of �q
*=1/ �tq

*ka
1/a�; for ���q

*,
the leading-order result in Eq. �11c� describes the critical
spectrum with an error smaller than 10%. If � decreases from
1 to 1/2, ka increases from 2 to near 5. For � near a typical
value of 0.7, ka is above 3, and the onset frequency for the �a

law is about 30 times smaller than 1/ tq
*. Therefore, the de-

tection of the critical power-law in the loss spectra is even
more difficult than in the response function.

Including the leading-correction terms in the asymptotic
formulas, as noted in Eqs. �9a� and �11a�, is an obvious man-
ner to extend the range of applicability of the analytic de-
scription of the dynamics. This is demonstrated comprehen-
sively for the MCT for the hard-sphere system in Refs.
�14,16�. But there are cases, where this procedure does not
lead to satisfactory results. The mean-squared displacement
is an example, where the description of the increase towards
the plateau by the analog of Eq. �9a� cannot account for the
glassy dynamics �16�.

C. The Cole-Cole law

Equation �9b� is an asymptotic expansion in terms of
powers of the small quantity �= �−i�t0�a that holds up to
errors of �3. Substitution of this expansion into Eq. �3a� pro-
vides an analogous expansion for �mq���. Let us indicate
the nontrivial parts of the coefficients by a superscript m,

− �mq��� = fq
mc + 
�1 − a�hq

m�− i�t0�a

+ 
�1 − 2a�hq
mK̂q

m�− i�t0�2a. �12�

Comparing coefficients of equal powers of �, one finds

fq
mc = fq

c/�1 − fq
c�, fq

c = fq
mc/�1 + fq

mc� , �13a�

hq
m = hq/�1 − fq

c�2, hq = hq
m/�1 + fq

mc�2, �13b�

K̂q
m = K̂q + ��hq/�1 − fq

c�� ,

K̂q = K̂q
m − ��hq

m/�1 + fq
mc�� .

�13c�

Since the autocorrelation functions are normalized,
�q�t=0�=1, one gets fq

c �1. The kernel mq�t=0� can have
any positive value. Therefore, in principle, fq

mc can be any
positive number. The different normalizations can be elimi-
nated in the critical amplitudes by comparing the ratios hq / fq

c

and hq
m / fq

mc:

�hq
m/fq

mc� = �hq/fq
c�/�1 − fq

c� . �14�

These ratios determine the relative amplitude of the dynam-
ics around the plateau within the first scaling-law regime.
Equation �5a� yields ��q�t�− fq

c� / fq
c = �hq / fq

c���g±�t / t��, and
a corresponding identity holds for mq�t�. From Eq. �14� one
concludes that the relative amplitude of the first-scaling-law
contribution is larger by 1/ �1− fq

c��1 for the modulus than
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for the susceptibility; and 1/ �1− fq
c� increases with fq

c, the
�-peak contribution of the loss spectrum. Consequently,
within the range of validity of the first scaling law, it is easier
to measure the first-scaling-law contribution for the modulus
than that for the susceptibility.

The expansion �12� can be substituted into Eq. �3b� in
order to obtain an asymptotic expansion for the inverse of
the critical susceptibility, i.e., for the modulus. The result
shall be noted in the form

�q��� = �0q
cc /�1 + �− i�/�q

c�a + K̂q
cc�− i�/�q

c�2a� . �15�

The expression �q���−1 is correct up to errors of the order
�3a. The three parameters specifying this formula can be
expressed in terms of the coefficients in Eq. �12� and, via
Eqs. �13�, in terms of the coefficients specifying the correla-
tors in Eq. �9a�. One gets �0q

cc =1/ �1+ fq
mc�. This amplitude is

the complement of the �-peak strength fq
c of the normalized

loss spectrum,

�0q
cc = 1 − fq

c . �16a�

The characteristic frequency entering the new formula for the
susceptibility, is given by ��q

ct0�a= �1+ fq
mc� / �hq

m
�1−a�� or
by

�q
ct0 = ��1 − fq

c�/�hq
�1 − a���1/a. �16b�

The correction amplitude reads K̂q
cc= K̂q

m�1+ fq
mc� / ��hq

m�,
which is equivalent to

K̂q
cc = 1 + ��1 − fq

c�/hq�K̂q/� . �16c�

If the frequencies are so small that K̂q
cc�−i� /�q

c�  �1, Eq.
�15� simplifies to the transparent expression of the Cole-Cole
law,

�q��� = �0q
cc /�1 + �− i�/�q

c�a� . �17�

The condition of validity for this formula means that
the critical modulus can be described by the simple
power law in the first line of Eq. �12�. The modulus
spectrum obeys a formula analog to Eq. �11c�: �mq����
=
�1−a�sin�	a /2�hq

m��t0�a. Using the 10% criterion from
above, the last term in Eq. �12� can be dropped for frequen-

cies �t0� �� / �10
�1−a�  K̂q
m  ��1/a. The correlator corre-

sponding to the loss spectrum in Eq. �17� is given by the
Mittag-Leffler function of index a: Ma�x�=�n=0

� xn /
�1+na�,

�q�t� = fq
c + �0q

cc Ma�− �t�q
c�a� . �18�

The Mittag-Leffler function can be calculated efficiently by
Fourier-back transformation of �q���� /�.

Equation �17� describes a very broad peak for the loss
spectrum �q���� with a maximum located at �=�q

c. The spec-
trum is invariant under the interchange of �� /�q

c� to ��q
c /��:

the �q����-versus-log � curve is symmetric. The width of the
peak increases strongly with decreasing exponent a. For
a�0.3, � must increase by more than a factor of 104 in order
to scan the interval of frequency where �q�����q���q

c� /2.
This susceptibility formula known as Cole-Cole law, Eq.
�17�, was introduced as an empirical formula for dielectric

loss spectra in glassy systems �13�. In particular, broad peaks
located above the � peaks—often called �-peaks in this
context—have been fitted by it.

The Cole-Cole formula, Eq. �17�, exhibits simple limits
for small and large frequencies. For �� /�q

c�a�1, the Cole-
Cole susceptibility reproduces the general power law for the
loss spectrum, Eq. �11c�, �q������a. Similarly, the corre-
sponding Mittag-Leffler correlator reproduces the general
long-time asymptote for the response, Eq. �10�. For
�� /�q

c�a�1, the Cole-Cole spectrum describes a critical
spectrum which decreases with increasing frequency,
�q�����1/�a. This is similar to a von Schweidler law spec-
trum. The corresponding Mittag-Leffler correlator decreases
according to the law ��t�−const�−ta. This yields a response
function ��t��1/ tx with x=1−a�1. Such behavior is con-
sistent with the one detected by the OKE results for van der
Waals liquids �9�.

The crossover of the critical spectrum from the low-
frequency wing to the high-frequency wing of the Cole-Cole
loss peak has a counterpart for the Mittag-Leffler correlator
that is most easily seen in a semilogarithmic plot. For
�t�q

c�a�1, the ���t�−const�-versus-log t curve is bent down-
ward, as known for the von Schweidler curves. For
�t�q

c�a�1, there is the critical power-law decay which shows
up as an upward-bent curve. Hence, the ��t�-versus-log t
curve exhibits an inflection point. For an exponent a around
0.3, the curve is nearly straight for an increase of log10 t by a
factor of about 3. In this case, there is nearly logarithmic
decay of the critical correlator for a time variation over three
orders of magnitude.

It depends on the size of 1 /�q
c relative to the microscopic

time scale tmic which part of the Mittag-Leffler correlator
dominates the critical dynamics in the time range of interest.
The crucial question concerns the range of validity of the
leading-order result for the susceptibility and for the modu-
lus. These ranges are determined by the correction ampli-

tudes. If K̂q is large and K̂q
m small, the Cole-Cole formula

has a larger range of applicability than the general simple

power-law formula �11c�. But, if K̂q
m is larger than K̂q, Eq.

�11c� is a better approximation for the critical decay than the
Cole-Cole spectrum. Since the square brackets in Eqs. �13�
are positive, there are two obvious results. If K̂q is positive,

there holds K̂q
m� K̂q. In this case, the leading-order result for

the susceptibility is a better description of the critical spec-

trum than the Cole-Cole spectrum. If K̂q
m is negative, there

holds K̂q
m  � K̂q and the application of the Cole-Cole law is

superior to the one of the general leading-order result for the

loss spectrum. For negative correction amplitudes K̂q, there

is a trend for cancellation of the two contributions to K̂q
m in

Eq. �13c�. It is a generic situation, that K̂q
m is smaller than

K̂q. Hence, for K̂q�0, it is expected that the Cole-Cole law
is a good description of the critical dynamics.

A detailed discussion of the MCT equations has shown
that a large arrested part fq

c implies a large negative correc-

tion amplitude K̂q for the critical decay �14�. In this case, the
onset time tq

* may exceed the microscopic time scale tmic by
several orders of magnitude. The time range for the applica-
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bility of the leading-order asymptotic description of the criti-
cal decay may be outside the accessible range of the existing

spectrometers. But, this is the situation, where K̂q
m may be

so small that the Cole-Cole law or the Mittag-Leffler cor-
relator can provide an adequate description of the critical
dynamics.

IV. APPLICATION TO SCHEMATIC MODELS

The preceding results shall be demonstrated in a simple
schematic model for two different cases where the model
parameters are adjusted to reproduce the data measured for
benzophenone �BZP� and salol �9,10,12�

The simplest MCT models deal with a single correlation
function only. For these models, the formulas in the preced-
ing sections simplify since the label q can be dropped. The
correlator, the critical arrested part, and the critical amplitude
shall be denoted by ��t�, fc, and h, respectively. The model
is specified by the frequency � and the friction coefficient �
in the equation of motion �2a�. Furthermore, there are the
non-negative coefficients vl, l1, which specify the mode-
coupling monomial of order l for F in Eq. �2b�. In applica-
tions for data descriptions, the specified numbers are consid-
ered as smooth functions of the physical control parameters.

The simplest model for the polynomial F, which can re-
produce all possible values for the exponent parameter �, is
given by the following formula for the fluctuating-force ker-
nel:

m�t� = v1��t� + v2��t�2. �19�

The two coupling constants v1 and v2 specify the state of the
system by a point in the first quadrant of the v1-v2 plane, cf.
lower inset in Figs. 1 and 4. The points �v1

c ,v2
c� for generic

fold bifurcations are located on a piece of a parabola. The
position of the specific transition point can be characterized
by the value for � �17�:

v1
c = �2� − 1�/�2, v2

c = 1/�2, fc = 1 − �, h = � .

�20a�

The separation of some point �v1 ,v2� from the transition
point �v1

c ,v2
c�, see upper insets Figs. 1 and 4, is given by

� = �v̂1 + v̂2�1 − �����1 − ��, v̂1,2 = v1,2 − v1,2
c .

�20b�

The arrested part of the correlator for the glass state reads
��t→ � �=h�� / �1−���1/2+O��3/2�. The splitting of this
value in an amplitude h and a remainder is not unique. The
cited value for the critical amplitude h follows the conven-
tions made in the preceding literature �14�. The general ex-

pression for the correction amplitude K̂ for M =1 models

�18� is specialized easily to K̂=��x�, where the function ��x�
is defined by

��x� = 1
2
�1 − x�3/��
�1 − 3x� − 
�1 − x�
�1 − 2x�� .

�21�

Function ��x� increases monotonically with increasing �:
it decreases with increasing x. For �=1/2, i.e., for

a=0.395. . . , one gets ��a�=−0.169. . . . For � approaching
1, a tends to zero and ��a� diverges. For a=1/3,
�=0.684. . . , the correction amplitude vanishes. All higher-
order corrections for the critical decay outside the transient
regime vanish as well for this special value of � �19�. There-
fore, for � near 0.7, the simple power-law formulas of the
leading-order asymptotic-expansion theory like Eqs. �8�,
�10�, and �11c� describe the critical dynamics very well.

For the specified model, there holds fc�1/2. Hence, this
model cannot be used to describe glassy-dynamics data for
systems where the �-peak loss spectra have a weight fc

which exceeds 50% of the total weight. Moreover, the rela-
tion between the exponent parameter � and the critical ar-
rested part fc, as formulated by Eq. �20a�, is an artifact of the
model. The minimum requirement for a schematic model for
data analysis is the freedom to adjust � and fc independently.
This goal can be achieved by introducing a second correlator.
The first correlator �q=1�t�=��t� is used as a caricature of the
density-fluctuation dynamics. It provides the exponent pa-
rameter. The second one describes the dynamics of some
probing variable, say, A. The correlator shall be denoted by
�q=2�t�=�A�t�. All quantities referring to this correlator shall
be indicated by an index A. The equation of motion �2a� is
specified by �A�0, �A0, and a kernel mA�t�. The two
frequencies quantify the transient dynamics. The kernel is a
polynomial �2b� of the two correlators involved. The sim-
plest model describing the coupling of the probing variable
to the density fluctuation is given by �20�

FIG. 1. �Color online� OKE response functions measured for
BZP for T /K=251, 260, 290, 320 �9� �full lines from bottom to top�
and fits by the schematic-model functions �A�t� �12� �dotted lines�.
The straight dashed line has slope −0.80. The dashed-dotted lines
labeled sc are the approximations by the scaling functions Eq. �28�,
the thin dashed lines are fits with Eq. �28� for freely adjusted s� and
t�. The insets show the separation parameter � �right� and the fitting
parameters �left�; two additional state points �+ and �� indicate
extrapolations for which solutions are shown in Fig. 7.
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mA�t� = vA��t��A�t� . �22�

The coupling of the probing variable to the density fluctua-
tions is quantified by vA�0. Since there is no influence of
the dynamics of the probing variable on the density dynam-
ics, the same scaling law function g±�t / t��, Eq. �5a�, de-
scribes the leading-order near-plateau dynamics of �A�t� as it
does for that of ��t�. Notice in particular that the parameters
�A, �A, and vA do not modify the time scale t0. In applica-
tions for data descriptions, the model parameters �A, �A, and
vA are to be considered as smooth functions of the physical
control parameters, cf. lower insets in Figs. 1 and 4.

The loss spectrum �A���� develops a � peak upon increas-
ing the mode-coupling coefficient vA �21�. For this special
case and in the limit of infinite vA, the Cole-Cole suscepti-
bility and the Mittag-Leffler correlator have been derived for
the critical dynamics of the probing variable in Ref. �18�.
The model specified by Eqs. �19� and �22� was used repeat-
edly for the description of experimental data �12,22–26�.
Large data sets for the evolution of the glassy dynamics of
propylene carbonate have been analyzed in Ref. �27�; results
measured for different probing variables A obtained by
neutron-scattering, depolarized-light-scattering, and
dielectric-loss spectroscopy have been fitted by a common
first correlator ��t�. The different probes have been charac-
terized by adjusting the parameters for the second correlator
�A�t� only.

Up to order �t0 / t�2a, the kernel mA�t� can be calculated
from Eq. �22� substituting the expression �9a� for ��t� and
the analog expression for the second correlator,

�A�t� = fA
c + ha�t0/t�a�1 + K̂A�t0/t�a� . �23�

Laplace transform yields �mA��� as an asymptotic power
series in the small parameter �= �−i�t0�a. The coefficients are

linear functions of fA
c , hA, and K̂A. This is substituted on the

left-hand side of Eq. �3a� for q=2. Expanding the right-hand
side up to orders �2, one can compare the coefficients in
order to arrive at

fA
c = 1 − �1/�fcvA��, hA = �/�fc2vA� . �24�

The correction amplitude shall be noted in the convention
of the general theory �14�:

K̂A = ��a� + KA, �25a�

KA = �va	 1

vA�1 − ��
− ��� �vA�1 − �� − 1� . �25b�

This leads to the parameters for the Cole-Cole susceptibility:

�0A
cc = 1/�fcvA�, �A

c t0 = ��1 − ��/��
�1 − a���1/a. �26�

Remarkably, the comparison of Eq. �26� with the general
expression in Eq. �16b� shows, that the Cole-Cole frequency
�A

c does not depend on the coupling coefficient vA. �A
c t0 de-

creases with increasing � from 0.37¼for �=1/2 to about
10−4 for � near 0.88. For � around 0.7, �A

c t0 is about 0.02.

A. Critical relaxation for a small Cole-Cole frequency

Figure 1 reproduces OKE-response functions measured
for benzophenone �BZP� �9� and fits to these data by the
response �A�t� calculated for the model defined in the pre-
ceding section. The fit parameters for the mode-coupling co-
efficients v1, v2, and vA are specified in the lower inset. The
analysis shall be done by anticipating a transition point
for �=0.70, which implies the exponents a=0.33 and
b=0.64. The cross in the inset is close to this bifurcation
point. The �-versus-T diagram is shown in the upper inset;
and extrapolation to �=0 suggests the critical temperature
Tc=235 K with an estimated uncertainty of ±5 K. The
251 K result exhibits the expected von Schweidler decay,
log ��t�=const− �1−b�log t for times between about 0.3 ns
and about 6 ns. Further details can be inferred from Ref.
�12�.

The MCT results describe the measured evolution of the
glassy dynamics adequately for times exceeding tmic=1 ps
with two exceptions. The T=251 K data exhibit a pro-
nounced oscillation near 1.1 ps, while the calculated curve
shows this oscillation near 0.9 ps. Furthermore, there are
some deviations between the theoretical results and the data
for the T=260 K results for times around 10 ns. The four
correlators �A�t� and the four loss spectra �A��t�, which are
shown in the lower panels of Figs. 2 and 3, respectively, are
the MCT results corresponding to the MCT responses �A�t�
shown in Fig. 1. The data fits have been calculated for fixed
relative values of the four frequencies, which specify the
transient dynamics: �A=�, �A=�=5�. The scale � for the
fits is chosen different for different temperatures T �12�. The
curves in Figs. 2 and 3 are presented with a T-independent
scale corresponding to that one used for the fit for
T=251 K: �=1.67 ps−1. With the mentioned reservations,
these curves can be considered as the measured quantities for
the OKE-probing variable A. The full lines marked c in Figs.
2 and 3 show the critical correlator �A

c �t� and the critical loss
spectrum �A�

c���, respectively, for the transition point speci-
fied by �=0.70 and vA=30. The correlator relaxes to the
plateau fA

c =8/9 with a critical amplitude hA=7/27.
The second scaling law for the decay below the plateau of

the correlators, Eq. �7�, implies a corresponding scaling law
for the response

�A�t� = �̃A�t/t���/t�� . �27�

The control-parameter independent shape function reads
�̃A�t̃�=−��̃A�t̃� /�t̃. The reader can check this superposition
principle for the results in Fig. 1 as follows. The
log �A�t�-versus-log t curve for T=320 K and t2 ps can be
translated so that it collapses with the curves for T /K=290,
260, and 251 for times exceeding 4 ps, 90 ps, and 290 ps,
respectively. Equivalently, the four loss spectra in Fig. 3 for
�A����0.1 are connected by the superposition principle,
�A����= �̃A���t���. The von Schweidler law describes a part of
the high-frequency wing of the loss peak as shown by the
straight dashed line with label vS for the T=251 K curve.
The Kohlrausch law for a stretching exponent �=0.91 de-
scribes the upper part of the � peak as shown by the dashed
line with label K for the T=260 K result.
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There is an interval of times between the end of the tran-
sient dynamics and the start of the von Schweidler decays
that deals with the relaxation towards and through the
plateau fA

c . The dynamics causes the loss spectra for
�A�����0.1 and � / �2	��0.1 THz shown in Fig. 3. The
leading order asymptotic solution of the MCT equations of
motion deals with this part of the dynamics together with the
von Schweidler law part by Eq. �5a�. This formula yields the
first scaling law for the response

�A�t� = hAs��̂�t/t��, s� = ��/t�. �28�

The shape function reads �̂�t̂�=−�g±�t̂� /�t̂, T�Tc. For
T�Tc, Eq. �4b� yields the von Schweidler response for large
rescaled times t̂= t / t�: �̂�t̂�1�=B ·b / t̂x, x=1−b�1. For
small rescaled times, Eq. �4a� yields �̂�t̂�1�=a / t̂x,

x=1+a�1. The crossover from one asymptote to the other
occurs for times near t�. The light dashed lines in Fig. 1
exhibit fits of the data by Eq. �28� for �=0.70. However,
both scales s� and t� are adjusted with the aim to achieve a
good match in the von Schweidler law regime. The 1/ t1+a

law is not exhibited by the results in Fig. 1. For T=320 K,
the crossover time t� is located near 1 ps, i.e., it is within or
close to the transient regime. For the other three temperatures
and times within the interval tmic� t� t�, the measured re-
sponse and the calculated functions �A�t� are below the val-
ues of hAs��̂�t / t��.

The straight dashed line in Fig. 1 has a slope of −0.80. It
demonstrates a pseudo-von Schweidler decay of the
T=251 K results for 2 ps� t�20 ps: �A�t�−const�−tb�,
b�=0.20. The �A�t�-versus-log t curves in Fig. 2 for t
�2 ps approach and cross the plateau as downward-bent
curves before entering the von Schweidler decay regime.
There are no inflection points of the curves for some time
near t�, as implied by Eq. �5a�.

The first scaling law describes a loss minimum of some
value �min at some position �min. The shape of the

FIG. 2. �Color online� Correlation functions for BZP. The lower
panel exhibits the correlators �A�t� underlying the fits in Fig. 1
�heavy full lines from left to right for T /K=320, 290, 260, and 251,
respectively�. The light full line with label c shows the critical
correlator calculated for �=0.7 and vA=30. The dotted line is the
leading asymptotic law, Eq. �8�, with the time scale t0=0.3775 ps.
The dashed line marked vS shows a von Schweidler law, Eq. �6�,
with b=0.64 and a time scale adjusted to match the T=251 K
curve. The dashed line labeled K is a fit by the Kohlrausch law,
�A�t�= fA

c exp�−�t /����, �=0.91, with � adjusted to match the
T=260 K curve. The times t0 and 1/�A

c =15 ps are indicated by
arrows. The upper panel shows the critical decay �c� together with
the leading-order �t−a� and next-to-leading-order �t−2a� asymptotic
power-law solution, Eq. �9a�. The dotted curve labeled cc displays
the leading-order Cole-Cole solution, Eq. �18�, with �0

cc=1/9. The
points of 10% deviation of the approximations t−a, t−2a, and cc from
the critical decay are indicated by the diamond, circle, and triangle,
respectively.

FIG. 3. �Color online� Spectra for BZP. The lower panel shows
the susceptibility spectra for the correlators from the lower panel of
Fig. 2. The leading-order critical spectrum, Eq. �11c�, is the dotted
straight line marked by �a. A dashed straight line with slope −0.2 is
fitted to the T=251 K spectrum to indicate an �−b� law for
b�=−0.2. In the upper panel, the dashed curve marked �2a shows
the approximation by Eq. �11a�. The approximation by the Cole-
Cole function �cc�, Eq. �17�, is shown dotted, the inclusion of the
correction, Eq. �15� yields the dashed curve labeled ccc for
�A

c =67 ns−1. The points of 10% deviation of the approximations
�−a, �−2a, and cc from the critical spectrum are indicated by the
diamond, circle, and triangle, respectively. The frequencies �A

c and
�=� / �2	�=1 THz are marked by arrows.
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log �A����-versus-log � curves is independent of the separa-
tion parameter � and the scales fix the position of the curve,
�min���, �min�1/ t�. The minimum is due to the crossover
from the von Schweidler wing of the � peak, ������1/�b,
to the power-law asymptote for the critical dynamics,
�������a. For most practical purposes, the minimum can be
approximated by the interpolation formula �28�:

�A����/�min = �b��/�min�a + a��min/��b�/�a + b� . �29�

However, the loss spectra in the lower panel of Fig. 3 do not
exhibit loss minima, which can be described by the interpo-
lation formula for the leading-order asymptotic result. The
minima for frequencies � near 1 ps−1 do not depend sensi-
tively on �. With decreasing �, the minimum position even
shifts slightly upwards rather than downwards. With
increasing frequency, the high-frequency part of the � peak
exhibits a crossover from the von Schweidler decay,
������1/�b, to a pseudo-von Schweidler decay,

������1/�b�. For T=251 K, this high-frequency wing ex-
tends from ��0.02 ps−1 to about 0.4 ps−1 with b�=0.2, as is
demonstrated by the dashed straight line. The observed mini-
mum is due to the crossover from the 1/�b� wing to the
spectral peak for the normal-liquid dynamics. The latter is
located near �=1 THz.

The scaling law fits, which are shown in Fig. 1 by the
light dashed lines, are misleading because the scales s� and
t� have been adjusted freely. Calculating these scales from
Eqs. �5b�, �20b�, and �24�, one obtains for T=251 K and
260 K the dashed-dotted lines marked by sc. The two dis-
tance parameters �= �Tc−T� /Tc are −0.07 and −0.11, respec-
tively. These values are too large for a leading-order
asymptotic formula to be applicable.

The correlator �A�t� for the lowest temperature under dis-
cussion is close to the critical one for t up to about 30 ps, as
is shown in the lower panel of Fig. 2. Hence, the T=251 K
curves exhibit critical glassy dynamics for the times between
1 ps and 30 ps. From Eqs. �25� one obtains the correction

amplitude K̂A=−1.51. This large value yields an onset time tA
*

for the t−a law which is beyond t=103 ps as is marked by the
diamond in the upper panel of the figure. Including the lead-
ing correction term yields the approximation by the dashed
line denoted t−2a. It improves the description of the critical
decay so that it can be understood for times larger than about
t=30 ps. But the expansion formula �23� cannot be used to
describe that part of the critical decay, which is measured for
BZP and described by the solution of the two-component
schematic MCT model.

Substituting the cited values for �, fA
c , and hA into Eqs.

�13a� and �13b�, one gets the plateau for the modulus,
fA

mc=8, and the critical amplitude hA
m=21. Notice that the

relative strength of the first scaling law amplitude for the
modulus is much larger than that for the correlator,
hA

m / fA
mc=2.6 versus hA / fA

c =0.29. From Eq. �13c�, one obtains

the correction amplitude K̂A
m=0.124. As expected from the

discussions of Sec. III, the onset time tA
m* for the leading

order formula for the modulus,

mA�t� = fA
mc + hA�t0/t�a, �30a�

is smaller than tA
* by more than a factor 1000. As a result, see

the upper panel of Fig. 2, the equivalent formula �18� for the
correlator,

�A�t� = fA
c + �1 − fA

c �Ma�− �t�A
c �a� , �30b�

describes the probing variable A for all times exceeding
t=1 ps. The leading-order asymptotic result for the modulus
explains the response for T=251 K quantitatively within the
interval 1 ps� t�30 ps.

Figure 3 shows that the leading asymptotic description of
the critical loss spectrum, Eq. �11c�, would be relevant for
the explanation of the loss minimum only in cases with
�min�2�10−5 ps−1. The dashed line labeled �2a exhibits
the asymptotic expansion for the critical loss up to the lead-
ing correction, Eq. �11a�. This formula is relevant for
��10−3 ps−1. Even this expression is unsatisfactory for the
discussion of the BZP results because of the large correction
amplitude. However, the Cole-Cole spectrum describes the
critical loss reasonably for ��0.2 ps−1. The correction am-
plitude for the Cole-Cole law, Eq. �16c� is very small,

K̂A
cc=0.076. The Cole-Cole law with leading correction,

Eq. �15�, is shown in the upper panel of Fig. 3 by the curve
marked ccc, and is slightly above the leading-order result in
the regime of large frequencies.

For the system under study, the Cole-Cole frequency
reads �A

c =0.067 ps−1. This frequency �A
c / �2	��10 GHz is

small compared to the 1 THz scale for the normal-liquid
dynamics. The value −log �A

c is in the center of the log t
interval studied by the results of Fig. 1. Therefore, the criti-
cal spectrum relevant for the understanding of the data dif-
fers qualitatively from the leading-order power-law formula.
As a result, the loss minima in Fig. 3, which are caused by
the superposition of the critical spectra for � near and above
�A

c and the von Schweidler law wing of the � peak, differ
drastically from the general low-frequency shape described
by Eq. �29�. For T=251 K, the superposition yields the
pseudo-von Schweidler law manifested as a wing specified
by the exponent b�=0.20. This wing will be analyzed further
in Sec. V.

B. Critical relaxation for an intermediate Cole-Cole frequency

Five OKE response functions measured for salol �10� and
fits by the functions �A�t� of the above explained schematic
model are reproduced in Fig. 4. The filled dots in the insets
specify the mode-coupling coefficients v1, v2, and vA used
for the calculations. Further details can be found in Ref. �12�,
where, however, the value for � was misprinted. The series
of states �v1 ,v2� extrapolates to a transition point with
�=0.73, which implies a critical exponent a=0.31 and a von
Schweidler exponent b=0.59. The extrapolation of the
�-versus-T parameters to �=0 suggests a critical tempera-
ture Tc=245 K with an estimated uncertainty of ±3 K. The
MCT correlators �A�t� and loss spectra �A����, which are
equivalent to the response �A�t� in Fig. 4, are shown in the
lower panels of Figs. 5 and 6, respectively. They can be
considered as the measured results for the glassy dynamics
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of salol, since the calculated and measured curves in Fig. 4
agree outside the transient regime. This holds with the reser-
vation, that fits and measurements for the T=270 K results
exhibit some discrepancies for times exceeding 20 ns. The
lines with label c in Figs. 5 and 6 show critical correlators
and critical loss spectra, respectively, calculated for �=0.73
and vA=55. The correlators relax to the plateau fA

c =0.93 with
a critical amplitude hA=0.18.

The test of the superposition laws for the long-time relax-
ation parts of the correlators is left to the reader. This second
scaling law of MCT relates the �-relaxation peaks for the
loss spectra for �A����0.1. Kohlrausch-law fits and von
Schweidler asymptotes have been added to the data for
T=257 K and T=247 K, respectively, in order to emphasize
that the results for the evolution of the below-plateau-decay
process follows the familiar pattern. Notice that the response
for T=257 K exhibits the von Schweidler law decay,
log �A�t�=const− �1−b�log t for the large time interval
0.1 ns �t�10 ns. The measurement for this temperature
permits a rather precise determination of the exponent b and,
thereby, of �.

The light-dashed lines in Fig. 4 are fits of the data by the
first-scaling-law expression �28� with freely adjusted scales
s� and t�. For T270 K, these fits describe the data outside
the transient regime up to times within the von Schweidler
law region. A more detailed documentation of this result can
be found in Ref. �10�, where also consistency of the fitted
scales s�, t�, and t�� with the MCT-power-law formulas was
demonstrated. The scaling-law results calculated with the
MCT values for the scales hA, s�, and t� in Eq. �28� are
shown in Fig. 4 as dashed-dotted lines marked sc for the
T=257 K and T=247 K data. For T=257 K, �=−0.05 is so
large, that Eq. �28� cannot account quantitatively for the
scales ruling the von Schweidler law decay. For T270 K
the distance parameter � exceeds 10%; the leading

asymptotic expansion formula for the plateau-crossing pro-
cess is not applicable for such large distances of the control
parameter from the critical value. In contrast, the scaling law
�28� describes the T=247 K result well for the large time
interval 0.04 ns �t�10 ns. In this case, the distance param-
eter �=−0.008 is so small that the leading-order expansion
result for the plateau crossing, Eq. �5a�, accounts for a major
part of the long-time response—readjusting the scales �hAs��,
and t� would not improve the fit.

Figure 5 shows that the T=247 K response is close to the
critical one for t�1 ns. The straight dashed line with slope
−1.15, which is shown in Fig. 4, demonstrates that the criti-
cal response exhibits a power-law decay �A�t��1/ t1+a�,
a�=0.15, for 2 ps �t�100 ps. This is equivalent to a power-
law decay of the correlator, �A�t�− fa

c �1/ ta�. In qualitative
agreement with the prediction by Eq. �5a�, the crossover
from the t−a decay to the −tb decay causes an inflection point
for the �A�t�-versus-log t curve in Fig. 5. The corresponding

FIG. 4. �Color online� OKE-response functions measured for
salol for T /K=247, 257, 270, 300, 340 �full lines from bottom to
top� �10�. The dotted lines are fits by the schematic-model response
�A�t� calculated with �=2�A=10�A=15.9 ps−1 �12�. Symbols and
curve styles are the same as in Fig. 1. The slope of the straight
dashed line is −1.15.

FIG. 5. �Color online� Correlation functions for salol. The lower
panel shows the correlators �A�t� used for the response fits in Fig. 4
for T /K=247, 257, 270, 300, and 340 �heavy full lines from right to
left�. The light full line shows the critical correlator calculated for
�=0.73, and vA=55. The dashed line marked vS exhibits a von
Schweidler law, Eq. �6�, for a time scale chosen to match the
T=247 K correlator. The dashed line marked K is a Kohlrausch-law
fit for the T=257 K curve with exponent �=0.95. The dotted line
exhibits the formula �8� with t0=0.002 46 ps. The upper panel
shows the critical decay �c� together with the leading- �t−a� and
next-to-leading-order asymptotic solution �9a� �t−2a�. The dotted
curve labeled cc displays the leading-order solution from Eq. �18�
with �0

cc=0.067 and �A
c =7.25 ps. The points of 10% deviation of

the approximations t−a, t−2a, and cc from the critical decay are in-
dicated by the diamond, circle, and triangle, respectively. The times
t0 and 1/�A

c are marked by arrows.
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crossover from the �−b wing of the � peak to some �a�

spectrum causes the loss minimum located near
log �=−2.5 in Fig. 6. The dashed curve marked sc�
exhibits a description of this minimum by the function
�A���� /�min= �b�� /�min�a�+a���min/��b� / �a�+b� which is
suggested by Eq. �29�. For salol, as opposed to BZP, the
minimum position decreases strongly with decreasing �, in
qualitative agreement with the first scaling law results.

The inconsistent exponents for T=247 K in the regime
2 ps �t�100 ps indicate that the leading-order asymptotic
description is still not applicable; the exponents a�=0.15 ob-
tained from the fit of the OKE data and a�=0.24 obtained
from the fit of the corresponding minimum are different and
both are smaller than the correct value of a=0.31. The de-
viation of the critical correlator from the leading-order
power-law result �8� and �10� within the specified time inter-
val is caused by the large value for the correction amplitude,

K̂A=−1.78. This value implies an onset time for the t−a decay

of beyond 20 ps as shown by the diamond in Fig. 5. The
high-frequency part of the loss minimum is located in the
region 10 ns−1���1 ps−1. Figure 6 demonstrates that the
�a law does not describe the critical loss there. Inclusion of
the leading correction terms for the analytic description of
the critical dynamics, i.e., using Eq. �9a� for the correlator
and Eq. �11a� for the loss spectrum, explains the result for
t0.6 ps and ��25 ns−1, as demonstrated in Figs. 5 and 6,
respectively.

From Eq. �13c�, one derives the correction amplitude for

the modulus K̂A
m=0.177. The leading-order formula �30a� for

the relaxation kernel describes the kernel mA outside the tran-
sient regime. The corresponding expression �30b� for the cor-
relator and the equivalent Cole-Cole formula for the loss
spectrum account for the critical glassy dynamics, as shown
in Figs. 5 and 6. The Cole-Cole formula with correction term

of amplitude K̂A
cc=0.09 yields a slight improvement com-

pared to the equation based on K̂A
cc=0, as shown in Fig. 6 by

the curve with label ccc. Equation �16b� leads to the Cole-
Cole frequency for salol, �A

c =7.25 ps−1. This value is close
to the loss peak for the normal-liquid dynamics: �A

c tmic�1.
The part of the glassy critical loss spectrum which is relevant
for the explanation of the data in Fig. 4 deals with the regime
10−4�� /�A

c �10−1. Within this frequency interval, the Cole-
Cole spectrum increases smoothly with �. Therefore, the
leading-order formulas �10� or �11c� describe the dynamics
qualitatively. However, the true critical spectrum differs from
its low-frequency asymptote, Eq. �11c�. Hence, the descrip-
tion of the dynamics by the scaling law is not correct quan-
titatively. Within the specified interval, the log �A����-versus-
log � spectrum can be approximated reasonably by a straight
line, log �A�����const+a�log �, a�=0.24. As a result, the
critical dynamics is approximated well by a power-law decay
specified by an exponent a� smaller than the critical expo-
nent a.

In the preceding section, the critical spectra have been
discussed for both small and intermediate Cole-Cole fre-
quencies �q

c; the case of a large Cole-Cole frequency is
found in the depolarized light-scattering spectra for
CKN �3,29�. In the fits with a schematic model by
Alba-Simionesco and co-workers �30,31� one can identify a
Cole-Cole peak for the critical spectra, but the description
with the power-law solution is superior if terms up to order
�2a are considered.

V. COLE-COLE WING

Figures 1–6 demonstrate the scenarios for the evolution of
the glassy dynamics for �q

c � tmic
−1 and �q

c � tmic
−1 , respectively,

for the probing variable described by the second correlator of
a two-component schematic MCT model. Solutions for this
model, which exemplify a scenario as shown in Fig. 3, have
been discussed before by Cummins �32�. He pointed out that
the evolution of the wing phenomenon obtained from the
model is similar to the one known for dielectric-loss spec-
troscopy for glycerol and several van der Waals liquids �33�.
He emphasizes also that the cited measurements refer to tem-
peratures T below Tc, while the calculations are done for

FIG. 6. �Color online� Spectra for salol. The lower panel shows
the susceptibility spectra �A���� for the correlators shown in the
lower panel of Fig. 5. The leading-order approximation to the criti-
cal spectrum, Eq. �11a�, is shown as dotted straight line marked �a.
The dashed line labeled sc� exhibits the interpolation formula �29�
with the von Schweidler exponent b=0.59 and the critical exponent
a replaced by a�=0.24. The upper panel exhibits the critical spec-
trum as full line with label c, the leading-order asymptotic approxi-
mation, Eq. �11c�, �dotted, labeled �a� and Eq. �11a�, �dashed, la-
beled �2a�. The approximation by the Cole-Cole function for �A

c

=7.25 ps−1 �cc�, Eq. �17�, is shown dotted, the inclusion of the
correction, Eq. �15�, yields the dashed curve labeled ccc. The points
of 10% deviation of the approximations �−a, �−2a, and cc from the
critical spectrum are indicated by the diamond, circle, and triangle,
respectively. The frequencies �A

c and � / �2	�=�=1 THz are
marked by arrows.
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T�Tc. Furthermore, the experimental data demonstrate the
wing only for frequencies below 10 GHz�10−2tmic

−1 . So far,
no wing has been reported which occurs in the two-decade
frequency window adjacent to the microscopic excitation re-
gion.

In order to describe the wing phenomenon quantitatively,
one can extend the Cole-Cole formula so that the spectrum
can be described also for small but nonvanishing separation
parameters �=C�� �Tc−T� /Tc. The leading-order expres-
sion for the plateau-crossing process of the fluctuating
force correlators reads in analogy to Eq. �5a�: mq�t�
= fq

mc+hq
mg±�t / t��, ��0. Laplace transformation yields

�mq���=−fq
mc+hq

mC���. Function C��� obeys a scaling law,

C��� = ��c±��t��, � � 0, �31�

with the control-parameter independent shape functions
c±��̂� given by the Laplace transforms g±��̂� of the shape
functions g±�t̂�: c±��̂�= �̂g±��̂�. Substitution of �mq��� into
Eq. �3b� yields the desired result. Expansion of the right-
hand side in terms of the small parameter C��� and compari-
son with the result for �q��� following from Eq. �5a� repro-
duces the relations �13a� and �13b� for the critical arrested
parts and critical amplitudes. One gets

�q��� = �1 − fq
c�/�1 − �hq/�1 − fq

c��C���� . �32a�

Equation �32a� was found for the schematic model in Ref.
�18� for the special case of the second correlator �A�t� and in
the limit of infinite coupling strength vA. It is shown here,
that Eq. �32a� can be derived without such restrictions. The
leading correction to Eq. �32a� can be calculated from the
asymptotic expansions in Refs. �14,16� in a straightforward
manner; however, the evaluation of the result for fitting data
is rather involved. Focusing on the critical decay, one can
extend the preceding formula by adding the large-frequency
part of the correction:

�q��� = �1 − fq
c�/�1 − �hq/�1 − fq

c��C��� + K̂q
cc�− i�/�q

c�2a� .

�32b�

This expression describes the small-� dynamics for
�tmic�1 and frequencies extending down to the beginning
of the von Schweidler law decay.

BZP exemplifies the case of such a small K̂q
cc that the

leading-order result for the modulus, Eq. �32a�, can be used.
Figure 7 demonstrates that this result accounts for the
T=251 K spectrum for the large dynamical range
10−3 ps−1���1 ps−1. The scaling law result for the loss
spectrum, �A����=hACA����, is shown as dotted line sc; it can
describe only a part of the von Schweidler law spectrum for
��10−3 ps−1, but is inadequate for larger frequencies. This
observation for the dynamics in the frequency domain is
equivalent to the one demonstrated in Fig. 1 for the results in
the time domain. The second scaling law result for the loss
spectrum is exhibited as dashed-dotted line. It follows from
Eq. �7�, �A����= ��t����̃A���t���, and accounts for the loss peak
for ��10−3 ps−1. Combining the result for the second scal-
ing law for the modulus with the result for the first scaling
law for the loss spectrum explains the BZP spectrum for

T=251 K for ��1 ps−1 including in particular the �-peak
wing. The small but systematic discrepancies between the
loss spectrum in the structural-relaxation regime and the
asymptotic MCT expressions result from the fact that the
distance parameter �= �T−Tc� /Tc�0.07 is so large, that the
asymptotic results for the scales still have noticeable errors
while the shape functions already agree well with the non-
trivial spectra.

Starting from the state that fits the 251 K data for BZP, a
number of extrapolations are possible within the schematic
model. Keeping all parameters but �v1 ,v2� fixed, two addi-
tional states shall be considered; they are indicated by � and
+ in the left-hand inset of Fig. 1; and their spectra are
marked accordingly in Fig. 7. The first state point ��� is
close to the transition point and is characterized by
�=−0.003 ��=−0.01�. Solutions at this point are shown in
Ref. �12� for ��t� and �A�t�. The respective spectrum �A����
in Fig. 7 exhibits nearly constant loss for 0.4�10−3 ps−1

���0.4 ps−1 within a 10% margin. In this frequency win-
dow the maximum around �A

c indicates an emerging Cole-
Cole peak; the minimum at �=10−3 ps−1 is caused by the
crossover of the high-frequency wing of the � peak and the
low-frequency wing of the Cole-Cole peak. This minimum is
ruled by the first scaling law and the divergent time scale t�.
The second state �+� is an interpolation between � and the
solution for BZP; the separation parameter is �=−0.01
��=−0.03�, and the point is chosen similar to the ones used
in Fig. 4 of Ref. �32�. The spectrum in Fig. 7 shows a wing,
�A������−0.1, for almost three orders of magnitude in fre-
quency. Hence, the crossover between � and Cole-Cole
peaks can be interpreted as a power-law wing �−b� for some
range in frequencies and control parameters without finetun-
ing. The evolution of the crossover progresses from a wing
with gradually lower exponents b� to nearly constant loss

FIG. 7. �Color online� Asymptotic description of the wing in
BZP. The heavy full line reproduces the BZP loss spectrum for
T=251 K from Fig. 3 and the dashed one exhibits the spectrum of
the extended Cole-Cole susceptibility, Eq. �32a�. The triangles mark
the points of 10% deviation between these spectra. The dotted line
sc is the first scaling law result for the susceptibility, and the line cc
shows the Cole-Cole spectrum for the critical point. The dashed-
dotted line represents the second scaling law result for the loss
peak. The thin full lines are solutions corresponding to the state
points indicated by + and � in Fig. 1.
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and eventually the emergence of a Cole-Cole peak. While the
extrapolations presented in this paragraph are not at all im-
plied by the fit of the data, the scenarios seem nevertheless
possible for realistic parameter values.

To conclude the discussion of BZP, let us return to the
OKE data for T=251 K as shown in Fig. 8. In addition to
data and fit for this state, the Fourier backtransforms of the
asymptotic curves from Fig. 7 are displayed. While the
asymptotic solution at the critical point �labeled cc� covers
only less than a decade, the extended Cole-Cole susceptibil-
ity in Eq. �32a� describes the data over three orders of mag-
nitude in time and thereby explains the t−0.8 law found em-
pirically. The remaining discrepancies are again due to the
relatively large distance parameter for this state; Fig. 3 of
Ref. �12� shows prefect agreement with the Cole-Cole law
for states closer to the transition including state � from Fig.
1.

Different from the case for BZP, the lowest temperature
available for salol, T=247 K, is described by a much smaller
distance parameter, ��0.01, and therefore shares a larger
frequency regime, say ��0.1 ps−1, with the critical loss
spectrum, see the lower panel of Fig. 6. Being so close to the
critical point, the second scaling law in Fig. 9—labeled
�—is indistinguishable from the loss spectrum for �
�10−4 ps−1. The first scaling law sc describes the solution up
to around ��0.005 ps−1 which is the same as for the solu-
tion at the critical point, cf. upper panel of Fig. 6. As for the
critical spectrum, the leading-order approximation in Eq.
�32a� improves the description to larger frequencies by two
decades up to ��0.1 ps−1 before crossing over to the Cole-
Cole peak which in this case is hidden under the microscopic
excitations.

VI. CONCLUSION

Within the regime of glassy dynamics, susceptibilities
�q��� and moduli �mq��� are related by Eq. �3b�; and at the

critical point, susceptibilities and moduli are both described
by the universal power law �a. The range of validity of this

power law is given by amplitudes for the correction �2a—K̂q

for the susceptibilities and K̂q
m for the moduli, which are

related by Eq. �13c�. For some parameter regions a large

value of K̂q can render the power-law expansion for the
susceptibilities irrelevant, while the correction amplitude

K̂q
m is so small that the universal power-law can be used for

the description of the modulus successfully. Typically, this

occurs if K̂q is large and negative, and this can be expected if
the plateau value fq

c is high, cf. Eq. �13c�. In this case, the
susceptibility can be described well by the expansion of its

inverse, Eq. �15�. For vanishing correction K̂q
m=Kq

cc=0, for-
mula, the susceptibility at the critical point is given by the
Cole-Cole law �17�, a formula first introduced in 1941 �13�.

The Cole-Cole frequency �q
c in Eq. �17� introduces a

characteristic scale for assorting the critical dynamics into
three categories. �1� If �q

c is large compared to the scale tmic
−1

for the band of normal liquid excitations, the Cole-Cole sus-
ceptibility reduces to the leading-order scaling law formula
which is implied by Eq. �5a�. There is a control-parameter
sensitive minimum as discussed for Eq. �29� that interpolates
between the von Schweidler law tail of the � peak, �q����
�1/�b, and the critical spectrum �q������a, where a and b
are related via the exponent parameter �. As an example for
such a scenario one can cite the molten salt CKN. While the
leading-order result alone is not sufficient to describe the
measured data quantitatively, the power-law expansion in
Eq. �11a� yields a satisfactory description that is superior to
the Cole-Cole solution �29�. �2� If �q

c is close to tmic
−1 , one

encounters a scenario demonstrated in Fig. 9 for salol. There
is a control-parameter sensitive loss minimum. It originates
from the crossover between the von Schweidler law tail and

FIG. 8. �Color online� Asymptotic description of the OKE data
for BZP. The full line reproduces the BZP data for T=251 K from
Ref. �9�; the dotted line reproduces the fit from Fig. 1. The dashed
curve, the dashed-dotted curve sc, and the dotted curve cc, respec-
tively, show the Fourier backtransforms of the extended Cole-Cole
susceptibility in Eq. �32a�, of the first scaling law, and of the Cole-
Cole law in Eq. �17�, cf. Fig. 7.

FIG. 9. �Color online� Asymptotic description of the minimum
in salol. The full line reproduces the salol loss spectrum for T
=247 K from Fig. 6 and the dashed one exhibits the spectrum of the
extended Cole-Cole susceptibility, Eq. �32a�. The triangles mark the
points of 10% deviation between these spectra. The dotted line cc is
the Cole-Cole spectrum for the critical point, and the line sc shows
the first scaling law result for the susceptibility; the diamonds mark
the points where sc deviates by 10% from the loss spectrum. The
dashed-dotted line represents the second scaling law result for the
loss peak.
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the critical spectrum; and the critical spectrum approaches
the maximum of the underlying Cole-Cole peak. A descrip-
tion by Eq. �29� is possible only, if the exponent a is replaced
by some effective one a�, which is smaller than a, cf. Fig. 6.
�3� If �q

c is smaller than the microscopic time scale, say
�q

ctmic�0.05, we obtain the scenario seen in Fig. 7 for ben-
zophenone �BZP�. In this case, the von Schweidler law part
of the � peak, �q��1/�b, crosses over to some flatter wing,
�q��1/�b�, a�b��b. This wing is caused by approaching
the Cole-Cole spectrum for frequencies around the maximum
at �q

c. For yet higher frequencies, one encounters a
crossover—from the high-frequency part of the Cole-Cole
spectrum for structural relaxation to the spectrum due to
normal-liquid excitations—producing a different kind of a
minimum. The position of this minimum is control-
parameter insensitive. For the understanding of this mini-
mum, both the scaling law �28� and the interpolation formula
�29� are irrelevant. On the other hand, as shown in Sec. V
and especially in Fig. 7, it is possible to describe the wing
rather accurately by the leading-order formula �32a�. If the �
peak is shifted to yet lower frequencies, the wing can give
way to a separate Cole-Cole peak.

All figures in this work have been prepared with model
parameters that reproduce the OKE-response functions of
benzophenone �BZP� and salol. Hence, Fig. 7 implies that
the BZP spectra for temperatures near 250 K, when mea-
sured by depolarized light-scattering in backward direction,
should exhibit an � peak wing for frequencies � between
about 1 GHz and about 100 GHz. The crossover from the
von Schweidler law wing to the wing induced by the Cole-
Cole peak is expected to occur around 1 GHz. This crossover

position depends sensitively on the temperature, because the
von Schweidler law relaxation depends sensitively on T.

The Cole-Cole law with correction, Eq. �15�, has been
derived in its fully general microscopic version in Sec. III;
only in Secs. IV and V the theory was specialized to sche-
matic models. While for the schematic models a number of
parameters can be fixed to describe experimental data, for
microscopic models the static structure of the model system
determines these parameters uniquely. A first example for
Cole-Cole dynamics in a microscopic model has been dis-
cussed recently for the mean-squared displacement �r2�t� of
the hard-sphere system �34�; including the Mittag-Leffler
function for the critical relaxation allows for an analytic de-
scription of the mean-squared displacement for the full range
of the dynamics similar to BZP in Fig. 7. In addition, the
Cole-Cole dynamics was identified in the data measured by
van Megen et al. �35� where Eq. �15� accounts for the data
for an interval in time of three orders of magnitude adjacent
to the transient dynamics. Hence, the results discussed above
seem relevant for both molecular and colloidal glasses and
can be expected to facilitate more detailed investigations.

ACKNOWLEDGMENTS

The author thanks W. Götze for repeated help during the
preparation of this work. The author is also grateful to L.
Berthier, H. Z. Cummins, P. Lunkenheimer, E. Rößler, and
Th. Voigtmann for enlightening discussions. Support was
provided by DFG Grant No. SP 714/3-1 and NSF Grants
Nos. DMR0137119 and DMS0244492.

�1� W. Götze, J. Phys.: Condens. Matter 11, A1 �1999�.
�2� W. Knaak, F. Mezei, and B. Farago, Europhys. Lett. 7, 529

�1988�.
�3� G. Li, W. M. Du, X. K. Chen, H. Z. Cummins, and N. J. Tao,

Phys. Rev. A 45, 3867 �1992�.
�4� W. van Megen and S. M. Underwood, Phys. Rev. E 47, 248

�1993�.
�5� J. Wiedersich, N. V. Surovtsev, and E. Rössler, J. Chem. Phys.

113, 1143 �2000�.
�6� R. Torre, P. Bartolini, and R. M. Pick, Phys. Rev. E 57, 1912

�1998�.
�7� R. Torre, P. Bartolini, M. Ricci, and R. M. Pick, Europhys.

Lett. 52, 324 �2000�.
�8� M. Ricci, P. Bartolini, and R. Torre, Philos. Mag. B 82, 541

�2002�.
�9� H. Cang, V. N. Novikov, and M. D. Fayer, J. Chem. Phys. 118,

2800 �2003�.
�10� G. Hinze, D. D. Brace, S. D. Gottke, and M. D. Fayer, Phys.

Rev. Lett. 84, 2437 �2000�; 84, 4783�E� �2000�; J. Chem.
Phys. 113, 3723 �2000�.

�11� L. Berthier and J. P. Garrahan, J. Phys. Chem. B 109, 3578
�2005�.

�12� W. Götze and M. Sperl, Phys. Rev. Lett. 92, 105701 �2004�.
�13� K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 �1941�.

�14� T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P.
Singh, Phys. Rev. E 55, 7153 �1997�.

�15� W. Götze, J. Phys.: Condens. Matter 2, 8485 �1990�.
�16� M. Fuchs, W. Götze, and M. R. Mayr, Phys. Rev. E 58, 3384

�1998�.
�17� W. Götze, Z. Phys. B: Condens. Matter 56, 139 �1984�.
�18� W. Götze and L. Sjögren, J. Phys.: Condens. Matter 1, 4183

�1989�.
�19� M. Fuchs and T. Voigtmann, Philos. Mag. B 79, 1799 �1999�.
�20� L. Sjögren, Phys. Rev. A 33, 1254 �1986�.
�21� G. Buchalla, U. Dersch, W. Götze, and L. Sjögren, J. Phys. C

21, 4239 �1988�.
�22� A. P. Singh, G. Li, W. Götze, M. Fuchs, T. Franosch, and H. Z.

Cummins, J. Non-Cryst. Solids 235-237, 66 �1998�.
�23� B. Rufflé, C. Ecolivet, and B. Toudic, Europhys. Lett. 45, 591

�1999�.
�24� A. Brodin, M. Frank, S. Wiebel, G. Shen, J. Wuttke, and H. Z.

Cummins, Phys. Rev. E 65, 051503 �2002�.
�25� S. Wiebel and J. Wuttke, New J. Phys. 4, 56 �2002�.
�26� H. Cang, J. Li, H. C. Andersen, and M. D. Fayer, J. Chem.

Phys. 123, 064508 �2005�.
�27� W. Götze and T. Voigtmann, Phys. Rev. E 61, 4133 �2000�.
�28� L. Sjögren, in Basic Features of the Glassy State, edited by J.

Colmenero and A. Alegría �World Scientific, Singapore, 1990�,

MATTHIAS SPERL PHYSICAL REVIEW E 74, 011503 �2006�

011503-14



pp. 137–151.
�29� M. Sperl, J. Non-Cryst. Solids �to be published�.
�30� V. Krakoviack, C. Alba-Simionesco, and M. Krauzman, J.

Chem. Phys. 107, 3417 �1997�.
�31� V. Krakoviack and C. Alba-Simionesco, J. Chem. Phys. 117,

2161 �2002�.

�32� H. Z. Cummins, J. Phys.: Condens. Matter 17, 1457 �2005�.
�33� P. K. Dixon, L. Wu, S. R. Nagel, B. D. Williams, and J. P.

Carini, Phys. Rev. Lett. 65, 1108 �1990�.
�34� M. Sperl, Phys. Rev. E 71, 060401�R� �2005�.
�35� W. van Megen, T. C. Mortensen, S. R. Williams, and J. Müller,

Phys. Rev. E 58, 6073 �1998�.

COLE-COLE LAW FOR CRITICAL DYNAMICS IN¼ PHYSICAL REVIEW E 74, 011503 �2006�

011503-15


